
Chapter

IV-2
IV-2Programming Overview

Overview.. 22
Organizing Procedures .. 22
WaveMetrics Procedure Files.. 23
Macros and Functions .. 23
Scanning and Compiling Procedures... 24
Indentation Conventions ... 24
What’s Next ... 25

Chapter IV-2 — Programming Overview

IV-22

Overview
You can perform powerful data manipulation and analysis interactively using Igor’s dialogs and the
command line. However, if you want to automate common tasks or create custom data analysis features, then
you need to use procedures.

You can write procedures yourself, use procedures supplied by WaveMetrics, or find someone else who has
written procedures you can use. Even if you don’t write procedures from scratch, it is useful to know enough
about Igor programming to be able to understand code written by others.

Programming in Igor entails creating procedures by entering text in a procedure window. After entering a
procedure, you can execute it via the command line, by choosing an item from a menu, or using a button in
a control panel.

The bulk of the text in a procedure window falls into one of the following categories:
• Pragmas, which send instructions from the programmer to the Igor compiler
• Include statements, which open other procedure files
• Constants, which define symbols used in functions
• Structure definitions, which can be used in functions
• Proc Pictures, which define images used in control panels, graphs, and layouts
• Menu definitions, which add menu items or entire menus to Igor
• Functions — compiled code which is used for nearly all Igor programming
• Macros — interpreted code which, for the most part, is obsolete

Functions are written in Igor’s programming language. Like conventional procedural languages such as C
or Pascal, Igor’s language includes:
• Data storage elements (variables, strings, waves)
• Assignment statements
• Flow control (conditionals and loops)
• Calls to built-in and external operations and functions
• Ability to define and call subroutines

Igor programming is easier than conventional programming because it is much more interactive — you can
write a routine and test it right away. It is designed for interactive use within Igor rather than for creating
stand-alone programs.

Organizing Procedures
Procedures can be stored in the built-in Procedure window or in separate auxiliary procedure files. Chapter
III-13, Procedure Windows, explains how to edit the Procedure window and how to create auxiliary pro-
cedure files.

At first you will find it convenient to do all of your Igor programming in the built-in Procedure window. In
the long run, however, it will be useful to organize your procedures into categories so that you can easily
find and access general-purpose procedures and keep them separate from special-case procedures.

Chapter IV-2 — Programming Overview

IV-23

This table shows how we categorize procedures and how we store and access the different categories.

Following this scheme, you will know where to put procedure files that you get from colleagues and where
to look for them when you need them.

Utility and global procedures should be general-purpose so that they can be used from any experiment. Thus,
they should not rely on specific waves, global variables, global strings, specific windows or any other objects spe-
cific to a particular experiment. See Writing General-Purpose Procedures on page IV-156 for further guidelines.

After they are debugged and thoroughly tested, you may want to share your procedures with other Igor
users via IgorExchange.

WaveMetrics Procedure Files
WaveMetrics has created a large number of utility procedure files that you can use as building blocks. These
files are stored in the WaveMetrics Procedures folder. They are described in the WM Procedures Index help
file, which you can access through the Help→Help Windows menu.

You access WaveMetrics procedure files using include statements. Include statements are explained under
The Include Statement on page IV-155.

Using the Igor Help Browser, you can search the WaveMetrics Procedures folder to find examples of par-
ticular programming techniques.

Macros and Functions
There are two kinds of Igor procedures: macros and functions. They use similar syntax. The main differ-
ence between them is that Igor compiles user functions but interprets macros.

Category What Where How
Experiment
Procedures

These are specific to a single Igor
experiment.
They include procedures you
write as well as window recreation
macros created automatically
when you close a graph, table,
layout, control panel, or Gizmo
plot.

Usually experiment procedures
are stored in the built-in
Procedure window.
You can optionally create
additional procedure windows
in a particular experiment but
this is usually not needed.

You create an experiment
procedure by typing in the
built-in Procedure window.

Utility
Procedures

These are general-purpose and
potentially useful for any Igor
experiment.
WaveMetrics supplies utility
procedures in the WaveMetrics
Procedures folder. You can also
write your own procedures or get
them from colleagues.

WaveMetrics-supplied utility
procedure files are stored in the
WaveMetrics Procedures folder.
Utility procedure files that you or
other Igor users create should be
stored in your own folder, in the
Igor Pro User Files folder (see Igor
Pro User Files on page II-31 for
details) or at another location of
your choosing. Place an alias or
shortcut for your folder in "Igor
Pro User Files/User Procedures".

Use an include statement to use
a WaveMetrics or user utility
procedure file.
Include statements are
described in The Include
Statement on page IV-155.

Global
Procedures

These are procedures that you
want to be available from all
experiments.

Store your global procedure files
in "Igor Pro User Files/Igor
Procedures" (see Igor Pro User
Files on page II-31 for details).
You can also store them in
another folder of your choice and
place an alias or shortcut for your
folder in "Igor Pro User Files/Igor
Procedures".

Igor automatically opens any
procedure file in "Igor Pro 7
Folder/Igor Procedures" and
"Igor Pro User Files/Igor
Procedures" and subfolders or
referenced by an alias or shortcut
in those folders, and leaves it
open in all experiments.

Chapter IV-2 — Programming Overview

IV-24

Because functions are compiled, they are dramatically faster than macros. Compilation also allows Igor to
detect errors in functions when you write the function, whereas errors in macros are detected only when
they are executed.

Functions provide many programming features that are not available in macros.

Macros are a legacy of Igor’s early days. With rare exceptions, all new programming should use functions,
not macros. To simplify the presentation of Igor programming, most discussion of macros is segregated into
Chapter IV-4, Macros.

Scanning and Compiling Procedures
When you modify text in a procedure window, Igor must process it before you can execute any procedures.
There are two parts to the processing: scanning and function compilation. In the scanning step, Igor finds
out what procedures exist in the window. In the compilation step, Igor’s function compiler converts the
function text into low-level instructions for later execution.

For the sake of brevity, we use the term “compile” to mean “scan and compile” except when we are specif-
ically pointing out the distinction between these two steps.

You can explicitly compile the procedures using the Compile button in the Procedure window or the
Compile item in the Macros menu.

By default, Igor automatically compiles the procedure text at appropriate times. For example, if you type in
the Procedure window and then hide it by clicking in the close button, Igor will automatically compile.

If you have many procedures that take long to compile, you may want to turn auto-compiling off using the
Macros menu.

When Auto-compile is deselected, Igor compiles only when you explicitly request it. Igor will still scan the
procedures when it needs to know what macros and functions exist.

Indentation Conventions
We use indentation to indicate the structure of a procedure.

The structural keywords, shown in bold here, control the flow of the procedure. The purpose of the inden-
tation is to make the structure of the procedure apparent by showing which lines are within which struc-
tural keywords. Matching keywords are at the same level of indentation and all lines within those
keywords are indented by one tab.

The body of the function
is indented by one tab.

Function Example()
<Input parameter declarations>

<Local variable declarations>

if (condition)
<true part>

else
<false part>

endif

do
<loop body>

while (condition)
End

The body of the loop is
indented by one tab.

Indentation clearly shows what is
executed if the condition is true and
what is executed if it is false.

Chapter IV-2 — Programming Overview

IV-25

The Edit menu contains aids for maintaining or adjusting indentation. You can select multiple lines and
choose Indent Left or Indent Right. You can have Igor automatically adjust the indentation of a procedure
by selecting the whole procedure or a subset and then choosing Adjust Indentation.

Igor does not require that you use indentation but we recommend it for readability.

What’s Next
The next chapter covers the core of Igor programming — writing user-defined functions.

Chapter IV-4, Macros, explains macros. Because new programming does not use macros, that chapter is
mostly of use for understanding old Igor code.

Chapter IV-5, User-Defined Menus, explains user-defined menus. It explains how you can add menu items
to existing Igor menus and create entire new menus of your own.

Chapter IV-6, Interacting with the User, explains other methods of interacting with the user, including the
use of dialogs, control panels, and cursors.

Chapter IV-7, Programming Techniques, covers an assortment of programming topics. An especially
important one is the use of the include statement, which you use to build procedures on top of existing pro-
cedures.

Chapter IV-8, Debugging, covers debugging using Igor’s symbolic debugger.

Chapter IV-9, Dependencies, covers dependencies — a way to tie a variable or wave to a formula.

Chapter IV-10, Advanced Topics, covers advanced topics, such as communicating with other programs,
doing FTP transfers, doing data acquisition, and creating a background task.

Chapter IV-2 — Programming Overview

IV-26

	Programming Overview
	Overview
	Organizing Procedures
	WaveMetrics Procedure Files
	Macros and Functions
	Scanning and Compiling Procedures
	Indentation Conventions
	What’s Next

